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We propose a method (algorithm) for calculation of the explicit formulas for 
evolution of the main and the residual overlaps. It allows us to confirm the 
Gardner-Derrida-Mottishaw second-step formula for the main overlap and to 
go beyond to the next steps. We discuss the dynamical status of the Amit- 
Gutfreund-Sompolinsky formula for the main overlap and some computer- 
simulation results. 
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1. I N T R O D U C T I O N  

Let (s ~ ,  P)  be a p robab i l i ty  space of infinite Bernoul l i  sequences 
{~i}F= 1 = {. Here  ~2 = { - 1, 1 } % ~ is the min imal  a -a lgebra  conta in ing  all 
Borel subsets  N'(R ~)  c~ Q, and P is a p roduc t  measure  defined on the cylin- 
der  sets C c Y by 

n n 1 
P{Ca , ,=  { { ~ g : ~ i ~ = a l , . . . , ~ , o = a n } } = T r Z ' = ' ( l + " ' ) / 2 ( 1 - T c )  Z'=m( a,)/2 (1.1) 

where p robab i l i t y  7r = P{{  ~ ~ :  ~j = 1 } for a rb i t r a ry  j =  1, 2 ..... Therefore,  
(2 is the space of real iza t ions  of d i cho tomous  independen t  ident ical ly  
d i s t r ibu ted  r a n d o m  variables  (i.i.d.r.v.). 

Let  us consider  M real iza t ions  ( tr ials)  of the above  Bernoull i  
p M S J : p ' t N ,  M (pat terns) .  Then the sequences of the length N, i.e., {{U}p= 1 = t~i  Si= l,p= 1 

L i t t l e -Hopf ie ld  mode l  o,2~ of the neura l  ne twork  with N neurons  and M 
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stored uncorrected patterns corresponds to the quenched random Ising 
model 

N 

H N ( S ) = -  ~ JMSiSj, S = { s , } N I  (1.2) 
i ,J=l 
(+v'j) 

where the interaction has the Hebbian form (1'21 

j M _  1 

- N  p = l  

with 7r = 1/2. 
Whenever M is not very large, e.g., M =  c~. N with a small enough c~, 

the ground-state energy H,(S)  has at least 2M sound minima separated by 
barriers of heights ,,~O(N). As has been rigorously proven by Newman, (3) 
there is ~ c >0  such that for a random system Of patterns p M {{U}p=l the 
above picture persists for ~ ~< c7,. in the limit N ~ c~ (c~-lim) in the sense that 
the probability of this event converges in this limit to 1. 

The aim of the present paper is to add a new result for this model 
concerning the exact recurrence equations for the parallel dynamics. Here 
we follow a probabilistic approach to the Little-Hopfield model proposed 
in ref. 4 and developed in ref. 5. For  the multilayered perceptron (Domany 
Meir-Kinzel model (6)) this approach gives (v) exact results for the dynamics 
of the main and the residual overlaps; see also the recent paper by Domany 
et al. (8) 

We recall that (for zero temperature 0 = 0) the parallel dynamics for 
the model (1.2), (1.3) corresponds to simultaneous updating the spin 
configuration S at the moment t + 1 according to the rule 

Si(t + 1)=  sign J2Si ( t )  , i= 1, 2 ..... N (1.4) 
j 1 
( j~ i )  

The simplest way to take into account nonzero temperature 0 r  is to 
switch on in (1.4) noisy terms {~b,}~= 1 which are i.i.d.r.v, with distributions 

[ f~,(x).=Pr{~i<~x}= ~ l + t h  ~ , i = 1 , 2  .... (1.5) 

so that one gets, instead of (1.4), the following stochastic equations: 

S~(t+ 1) = sign JMsj(t)+(J~ , i =  1, 2 .... (1.6) 
j 1 
( j~ i )  
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In the next three sections we present formulas describing the first three 
steps of evolution. Finally, we discuss the status of the Amit Gudfreund- 
Sompolinsky (AGS) formula (9) for the main overlap at t -- oe. We propose 
a derivation of this formula based on pure dynamical (instead of 
thermodynamic (9)) ideas. 

2. THE FIRST STEP: KINZEL F O R M U L A  A N D  THE RESIDUAL 
OVERLAPS 

Let {{P}p~=~ be a set of the fixed random patterns (quenched system) 
realized on the space (s Y,  P). Consider the space QM= Fip~=l O with 
corresponding ~-algebra @M and product measure pM. Then the above 
patterns are PM-almost surely (a.s.) stochastically independent: 

1 ~ pM ..... :' O, p - C p '  (2.1) 
i=1  

Let the initial configuration S(t = 0) be such that 

mP(t= 0) = 1  (S(0)- {P)N= 
mq(O) ~= O, p = q 

pm-a.s. 
N~o~ ' 0 ,  p ( # q ) =  1, 2 ..... M 

(2.2) 

Then, by means of (1.4), the main overlap mq(.) at t =  1 can be represented 
as  

m ) ( t = l ) = N , ~ l s i g n =  m q ' i ( t = 0 ) + ~ q ~  p=l ~ ~PrP ' i ( t=0)  (2.3) 

(P~q) 

where { r p(- ) }p ~ q denotes the residual (noisy) overlaps, i.e., 

1 N 
rP'i(t = 0 )  = ~  j=12 ~PSJ(t=O) (2.4) 

(j r i) 

The additional subindex i in (2.3), (2.4) means that the corresponding 
terms in the sums (2.2), (2.4) are canceled, 

1 q 1 ~ ~qSj(.) 
m q i ( - ) = ~ ( {  " S ( ' ) ) u . , = ~  

To establish the dynamics of the main overlap, we have to calculate 
(2.3) in the e-lim for a quenched system of random patterns. Below we show 
that the result is a.s. (with respect to the measure P ~ )  independent of this 
system. 
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Therefore, for the first step one has to prove that for an arbitrary fixed 
set of random patterns the noisy terms { ~ .  vqi(t = 0)}~_ i, where 

1 M 
V~N.,(t=O)-- /T ~ ~ ~Pr~ , ( t=0)  (2.5) 

~/Jv p = l  
(P~q) 

converge to a sequence of i.i.d.r.v. This would allow us to apply to (2.3) the 
law of large numbers (in the series scheme(~~ 

~-lim mq(t = 1) = Ee~ sign(mq(t = 0) + r/~(t = 0)) (2.6) 

where E~( . )  is the expectation over the stationary noise q , ( t = 0 ) =  
~Tv~(t = o). 

To this end, let us remark that according to the initial conditions, one 
gets that 

{ ~ P~PSj( I = O ) } ;--M(jv~i),p= l (p  C q ) =  Ilajpl] 

is a matrix of i.i.d.r.v, in f2 ~. Hence, by the central limit theorem (CLT) 
(ref. 10, III.w one gets (in the sense of distribution) that 

Here 

�9 "~NM -- E)'NM d 
e-hm (-~ar ~ = Y(0 ,  1) (2.7) 

c~-lim vq i(t = 0)-a-x~ JV(0, 1) (2.8) 

Then by the symmetry of the distribution JV(0, 1) and the independence 
of ~q and v~,i( t=0) we obtain the same for {t/i(t=0)}9= 1, which are 
by construction i.i.d.r.v., and r / i ( t = 0 ) = x ~ J V ( 0 ,  1). Consequently [see 
(2.6)], one gets (m 

( m q ( t = O ) )  
mq(t=l)=erf\  ~ ] (2.9) 

erf(z)=(2)l/2fodxexp(~2 2) 

N M 

 NM=2 2 
j = l  p - 1  
(jr (pr 

and X(0 ,  1) is a Gaussian random variable with mean zero and unit 
variance. Calculating the expectation and variance in (2.7) and taking into 
account definition (2.5), we get 
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To perform the next step t = 2 one can use the same line of reasoning 
as above, but now with distribution of ~/~(t = 1). Therefore [see (2.5)1, we 
have to calculate c~-lim for residual overlaps {rP(t= 1)}p~q. Using (1.4), 
one gets the following recurrence relations: 

r f ( t = l ) = ~ N , ~  sig n 1 rfN, i(t=O)+~ [ ~qm~v,~(t=0) 

+ - -  2 ~f l r~ i ( t=0)  , f ( r  ..... M (2.10) 
p = l  

(p 4- f,q) 

Let us introduce random variables 

1 M 
W'~(t=O)=r - ~ ~Pr~i( t=O)  (2.11) 

' ~ p = l  ' 

(p~-f,q) 

Warning. Random variables (1/~/N)rYs.i(t=O) and ;~Ywr'q~t=O) "~j N , j \  
are independent for i = j, but they are correlated for i :~ j, 

e.g., (1/~fN)rYu, l(t=O) is correlated with f q q ~2~2mu, z(t=O). So, 
- o  ~il~N,i( t -  )}i=1 is the sequence of dependent 

random variables. Compare this with the case of the multilayered 
perceptron, (7) where they are still independent. 

From Eqs. (2.2) and (2.4) by the CLT one gets 

rf(t=O)=~-limrf~(t=O)=c~-limr~q(t=O)~Jff(O, 1), f ~q (2.12) 

To derive the recurrence relation for {rP(t= 1)}peq, one has to fix the 
realization of residual overlaps at t = 0 and to consider the noise from 
choices of the patterns. 

Applying the CLT to the i.non-i.d.r.v. {~PrP.t(t 0 M = ) } p = l , p ~ f , q  
[according to (2.12), {rP~(t=0)}p is a fixed Gaussian realization; see 
(2.10),1, we obtain 

1 M 
~-lim----~ y" ~Pr~, , ( t=0)&, , f~JV(0,  1) (2.13) 

~/Jv p = l  
(p~-f,q) 

which is dependent on {rP(t = 0)}, but independent of {~P}. Therefore, by 
(2.11), {wq(t=O)&~-limw~P(t=O)}T=l is a sequence of i.i.d.r.v, with 
probability density 

1 7-+_ ~ 1  { [x-amq(t=O),12}2~ p~ o = ~  exp - (2.14) 

822/63/1-2-5 
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By symmetry of (2.14) and independence of ~q and wq(t= 0) we get the 
q q - -  c~  same distribution for {~w i (t - 0)} i= 1 : p~w(X) = p~,(x). 

Now we can to apply the CLT (together with the Berry-Esseen 
theorem, ref. 10, III. w to control the uniformity) to the sequence 

{s ign6~N=signI-~Nrs  ~fw~qi(t=O)]} 

to get 

~_lim ~iN= ~ sign 5(.,N-- E Z ~  ~ sign fi(. N d__ y ( 0  ' 1) (2.15) 
(Var 52~= t sign 6f )~/2 i,N 

Using (2.14) and pr p~ one gets 

c~-lim ~ E sign 5{ N = 2p~ = O)r/(t = 0) (2.16) 

Then we get that 
1 N 

e-lim ~ V a r  ~ sign 6Yi, u = 1 
i = l  

and finally by Eqs. (2.15) and (2.16) one obtains 

rI(t= 1) = A/'(0, 1)+2p~ f ~ q  (2.17) 

Therefore, the limit residual overlaps at the moment t = 1 are the sum of 
two correlated [see (2.12) and the warning following (2.11)] Gaussian 
variables. 

Using Eqs. (1.4), (2.2) and Eqs. (2.8), (2.9), one can show ~5) that ~-lim 
E(Sk(t = 1 ). Sk(t = 0)) = mq(t = 1 ) mq(t = 0). Hence, the covariance is 

Cov[rf( t= l ) .r f ( t=O)]-=mq(t= l )mq( t=O)+ 2p~ (2.18) 

and, as a consequence, we get for the variance of (2.17) 

D(t = 1) - Var rJ(t = 1) = 1 + (2p~ = 0)) 2 + 4p~ = O) mq(t = 1) mq(t = O) 

(2.19) 

So, we are ready to do the second step. 

3. THE SECOND STEP: G A R D N E R - D E R R I D A - M O T T I S H A W  
F O R M U L A  A N D  THE RESIDUAL OVERLAPS 

As above, we start with representation [cf. (2.3)] 

m q ( t = 2 ) = ~  2 sign m ~ , , ( t = l ) + ~  q c_~rN, i ( t = l  ) (3.1) 
i = l  p--I 

(P~q) 
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, )}i=1 [ef. (2.5) and (2.6)], To apply the CLT to {~,qvq, i ( t=  1 ) = q q i ( t =  1 N 
we first have to consider the convergence of {vq i ( t=  1)}u=l. TO this end, 
we can apply (for a fixed realization of Si(t=O)) the CLT to i.i.d.r.v. 
{~P. rP,~(t = 1 ) } p e o ;  then 

vqu, i( t = 1 ) -- Ev~ i( t = 1 ) d 
~-lim [ - ~ a r ~ i ~ 1 7 ~  - - Y ( 0 ,  1) (3.2) 

On the other hand, according (2.10) and Eqs. (2.11) and (2.14), one gets 
[see (2.2), (2.17), and (2.19)3 

c~-lim Ev~,,(t = 1 ) = S~(t = O) 2~. p~ = 0) (3.3) 

and Var vq, e(t = 1) = ~D(t = 1) + o(c 0. Therefore, with the help of (3.2) and 
(3.3), Eq. (3.1) can be represented in the following form: 

1 
sign{mq(t= 1)+  [c~D(t = 1 ) ] m ~ q Y ( 0 ,  1) m q ( t = 2 ) = ~ i = l  

+ 2~. p~ = o)~qs~(t ~ 0)} + o(1) (3.4) 

Let { i=  1, 2,..., N} = I +  w I _ ,  where I+ = {i: ~ q - s i ( t = 0 ) =  _+1}. Then 
from (3.4) we get, by the ergodic theorem for I_+ and ~lq(t= 1), that in the 
~-lim 

ILl a ~ sign{mq(t=l)  mq(t = 2 ) = ~ - l i m  ~ N [l~j 
~r ~ +__ l i 

+ [ . D ( t  = 11] '/~ Y ( 0 ,  1) + 2~.  p ~  = 0)o}  

or finally (Gardner-Derrida-Mottishaw formula ~2~) 

l + ~rmq(t=O) ~Fmq(t= l ) + 2c~ap~ 
mq(t = 2 ) =  ~=•  Z 2 er, L -f~(-;~= ~ (3.5) 

Here p~ and D(t= 1) are defined by (2.14) and (2.19). 
Now it is clear that to go beyond this formula to the next step one has 

first to calculate residual overlaps for t = 2. 
Starting from the explicit formula (2.10) for t = 2 and the representa- 

tion of the noisy term t/~.(t = 1) as we obtain above, one gets 

= - - - ~  sign r f i ( t  ~- 1 ) - 1 -  ~f~ q m q ( t = i  i . 1 )  

i i 

+ [c~D(t = 1 )] ~/,2 ~(JV'(0, 1) + 2c~p~ = O) ~ f s i ( t  = 0)] 

+o(1)  (3.6) 
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Let, for a~,2= _+1, 

A(61 , 0"2) = 0"1mq(t = 1) + o22gp~ (x = 0) (3.7) 

Then, following the line of reasoning presented above [see (2.11) (2.14) 
including the warning following (2.11)], we obtain for the probability 
density of the noisy terms {~{wq(t= 1)}~= 1 that [cf. (2.14)] 

P~w(x) = E P1(r 0-2) [ 2 ~ D ( t =  1)] ~/2 exp L -  2~D(t = 1) ) 
61,2 = • 

(3.8) 
Here ( f  vaq) 

P1(61, a2)=  Pr{61 -= ~ ( ~ ;  a 2 = ~fs,(t = 0)} - 
1 + 0-1r 

4 (3.9) 

Using (3.8) and the same arguments as above [see Eqs. (2.15)-(2.17)], we 
get from (3.6) that the residual overlap c~-lim rYN(t = 2) again is the sum of 
two correlated Gaussian variables. [cf. (2.17)] 

rf(t=2)=./V'(O, 1)+2p[(x=O)rf ( t=l) ,  f C q  

By reasoning similar to the above [-cf. (2.18)], but a bit 
calculation, one gets (see also ref. 5) 

CovLJV'(0, 1 ). rf(t = 1 )] 

(3.10) 

lengthier 

=- mq(t = 2) mq(t --- 1) 

1 - (mq(t = 0)) 2 
+ 2p~ = O) mq(t = O) mq(t = 2) ~ 2 

x ~ aerf(mq(t=l)+2~aP~ 
c~=+l F ~  ~ 1 ) - ~  (3.11) 

Equations (3.10) and (3.11) give the explicit formula for the variance of the 
random Gaussian residual overlaps at t =  2 [cf. (2.19)]: 

D ( t = 2 ) =  1 + (2p~w(X=O))2D(t = 1 ) + 4 p l ( x = 0 )  Cov[JIr(0, 1 ) . r f ( t =  1)] 

(3.12) 

4. THE TH IRD STEP 

We again have to repeat the analysis of the random variable 
~-lim v~v.i(t ) structure [see (2.5) and Eqs. (2.3), (3.1)], but now for t = 2 .  
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h(x) = 

where 

The same procedure as above [-cf. (3.2), (3.3)] gives a new deviation from 
Gaussian random variable [c~D(t = 2)]1/2X(0, 1) due to correlations: 

vq(t = 2) = [eD(t  = 2)] ~/2X(0, 1 ) + 2~p~,.(x = O) 

�9 [S,(t = 1) + 2p~ = 0) S,(t = 0)] (4.1) 

Compare Eqs. (2.8), (3.4), and (4.1). Then the probability density h(x) for 
the noisy term e-lira r /q~(t=2) [see (3.1) and (3.4)] takes the form 

1 [ ( x - g ( ~ 0 )  ~] 
c(al ,  az) [ 2 ~ e D ( t = 2 ) ]  I/2exp t_-  2cO( t=2)  J 

(4.2) 
o-1,2= +1 

c(crl, a z )=  Pr(~S~(t  = 1)= al ;d7S~(t = 0 )=  a2) 

l + ~ m q ( t  - -1 )  l + a 2 m q ( t = 0 )  

2 2 

g(G~, ~ )  = 2~p~w(x = 0 ) [ ~  + ~ .  2p~ = 0 ) ]  

(4.3) 

Using the representation (3.1) for t = 3  and Eqs. (4.1)-(4.3), we get 
[cf. (3.5)] 

" f ~ m q ( t = 2 ) + g ( ~ l ' a 2 ) ]  (4.4) mq(t=3)= 2 till, [ W  Z)l,j2 j 
~ , 2 =  +_1 

Where D ( t =  2) is defined by (3.12). 
In ref. 5 we formulate a conjecture about a possible structure of the 

formula for the main overlap m q ( t = n )  for arbitrary n which gave us no 
hint about t ~ oo. That is why instead we consider the status of the AGS 
formula (9) for the main overlap m q. 

This formula has been derived by the methods of equilibrium 
statistical mechanics. Therefore, it is reasonable to consider that 
m q = mq(t = oo ). 

. A M I T - G U T F R  EU N D - S O M  P O L I N S K Y  F O R M U L A  

Let m q = m. Then we call the system of coupled equations 

(5.1) 
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the AGS formula. (9) As mentioned above, this formula for the main overlap 
describes the final stage of evolution (t = Go). Since for parallel dynamics 
(which we consider throughout this paper) the evolution for t = oo does 
not stop at the fixed configuration, (13) we can try to apply our observations 
about the dynamics of the main and the residual overlaps for this stage. 

It is clear that under the parallel dynamics (1.4) at t = oo the system 
performs a random walk on some set A(~ q) in the vicinity of the pattern 
{q. This evolution is created by the internal noise due to the nonzero 
residual overlaps. It is very reasonable to suppose that at this stage we 
have: 

1. mq(t+ 1)=m~(t) - -s ta t ionar i ty  of the main overlap. 

2. rP(t + 1)= rP(t)--strong stationarity of the internal noise (p r q). 

Moreover, as follows from Eqs. (2.4), (2.7), and (3.10), the residual 
overlaps for any t are Gaussian random variables with zero mean and with 
the variance independent of p (Cq). 

3. rP(t) = Y(0,  D), p = 1, 2, ..., and they are i.i.d.r.v. 

Let S(t)EA({q). Then, to calculate the next step S( t+  1), we can use 
condition 3 and our first-step formulas (2.9), (2.17): 

(mq(t) "~ (5.2) mq(t + 1) = erf \(c~D)X/2j 

/ 2 "~1/2 { [-mL(t)]2~ rP(t) (5.3) rP(t+I)=JV(O, 1 ) + ~ D  ) exp 2c~D ]"  

Therefore, from condition 1 and Eq. (5.2) one gets 

(mq(O  mq(t) = erf \ ~ j  (5.4) 

Using (2.18) and (3.11), it is hard to predict how the correlation between 
JV~(0, 1) and re(t) increases. But from condition 2 and Eq. (5.3) one gets 
that .At(0, 1) and rf(t) have to be linearly correlated. Hence A#(0, 1)= 

rf(t)/,J-D. Then, calculating the variance D defined by condition and 
Eq. (5.3), we obtain that 

= 1 + \~-~ /  exp [ 2c~D ) (5.5) 

For mq(t)=m and D=R, Eqs. (5.4) and (5.5) coincide with the 
system of AGS equations (5.1). 
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6. C O N C L U D I N G  R E M A R K S  

For nonzero temperature 0 r 0 we have to use the stochastic equations 
(1.6). The heat-bath temperature noise (1.5) is completely uncorrelated 
with internal evolution and is unquenched. Therefore, to get the 
corresponding equations of dynamics for the main and residual overlaps, 
one has simply to average the equations for 0- -0  over the linear noise 
(1.5), (1.6)/7) 

For example, instead of Eqs. (2.9) and (2.17), one gets (/~= 0 -2) 

1 1 +oo 
mq(t = ) = ( 2 ~ ) m f _  dx th[~(x+mq( t=O))]exp( -~)  

rP(t= 1)=~2(0, 1)+rP(t=O) -o~ dXch2~(x-mq(t=O)) 

xexp ( -  ~ )  (6.1) 

Similarly [cf. (3.5)] we get 

mq(t=2) = 
1 -t- ffmq(l=O) 1 f~ 

,= _+1 2 [2rcc~D(t= 1)] ~/2 _~ 

+a\~nJ f_~ dYch2fl(y-mq(t=O)) 

dxth fl[mq(t=l)+ x 

x 2 

(6.2) 

where [cf. (2.19)] 

D(t= 1)= 1 J - ~  dx 

( 2  ,~I/2 [. +~ B exp(_x:/27) 
+ 2mq(t = 1 )mq(t = O) \~-~/ 1 dx 2 chefl(x mq(t 0)) o o  

(6.3) 

The same procedure applied to Eqs. (5.4) and (5.5) gives the well-known 
AGS equations for 0 r 0/9) 

Let us stress here that our derivation of the AGS formula is based on 
convincing but sloppy arguments which are far form rigorous. Moreover, 
they have to be modified for c~ > ~c~0.15, where, according to (5.1), one 
gets mq=O, which is inconsistent with numerical results predicting 
mq(9~>O~c)~O; see, e.g., refs. 4 and 9. 
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In conclusion, we remark that our results for t =  1, 2 confirm the 
histograms obtained by computer simulations in ref. 4. For example, the 
histograms for {v~(t = 1)}i are symmetric despite becoming very broad for 

> % deviating from sound Gaussian form. The explanation comes from 
the explicit formula [cf. (3.4) and (2.14)1 

vq(t= 1) = [c~D(t=l)]ll2~Ar(O, 1)+  exp [mq(t=O)]2~ Sitt=O ) 
2c~ J 

(6.4) 

Because of P r { S i ( t = 0 ) =  + 1 } = 1 / 2  it is clear that vq(t= 1) is a 
combination of two symmetrically shifted Gaussians and for small ~ this 
shift is very small due to the exponent in (6.4) (compare with ref. 4, Figs. 5a 
and 6a). 

For 

~.qvq(t= 1)=  [aD(t = 1)]l/2~qY(0, 1) 

+ (_~)1/2 exp { Emq(t=O)]:} 
}3 ~ q s , ( t = 0 )  (6.5) 

the histogram is symmetric (Pr{~7= +_1} = 1/2) and close to Gaussian 
only for a small e (see ref. 4, Fig. 5b). For large ~ (in ref. 4, :~ = 0.16), when 
the second term in the right-hand side of (6.5) becomes important, the 
random variable (6.5) is an asymmetric combination of the two Gaussians. 
These asymmetric shifts are due to initial conditions (2.2): 

P r { ~ q s / ( t = 0 ) =  +1} = {[1 +mq(t=O)]/2 (6.6) 
- [ 1 - m q ( t = 0 ) ] / 2  

This asymmetry is accumulating and increases with iterations because 
P r{~qs i ( t )=  + l } > P r { ~ q s i ( t ) = - 1 } ;  see (4.1) and (6.6). Finally, this 
produces a double-hill asymmetric histogram like that in ref. 4, Fig. 6b, for 
t = 206. 
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